授業科目	必・選	学 年	学科(組) 専 攻	担当教員	単位数	授業時間	自学自習時間
応用物理 I Applied Physics I	必修	3年	E	成田 章 (非常勤)	2	通年週2時間 (合計60時間)	

[教 材]

教科書:高専テキストシリーズ「物理 (上) 力学・波動」,潮 秀樹 監修,大野秀樹 他 編集, 森北出版

高専テキストシリーズ「物理 (下) 熱・電磁気・原子」、潮 秀樹 監修、大野秀樹 他 編集、森北出版

問題集:高専テキストシリーズ「物理問題集」, 潮 秀樹 監修,大野秀樹 他 編集, 森北出版

資料集:「フォトサイエンス 物理図録」, 数研出版編集部 編, 数研出版

その他: 自製プリントの配布

[授業の目標と概要]

工学一般の基礎知識となる物理学の中で、光学を含む波動、および原子物理に関する知識を習得する。

法則・公式の導出過程を理解することによって、体験・観察した物理現象などの原理について考察する力を養う。

「授業の進め方]

講義形式で行う。必要に応じて適宜演習や小テストを実施し、またレポート課題、宿題、ノート提出等を課す。 試験結果が合格点に達しない場合、再試験を行うことがある。

[授業内容]

[授業内容]		
授 業 項 目	時 間	内 容
授業ガイダンス	1	授業の進め方と評価の仕方について説明する。
1. 光の進み方 (1) 光の速さ・	1	光速の測定方法を説明できる。
(1) 元の返る・ (2) 光の反射と屈折	$\begin{array}{c c} 1 \\ 2 \end{array}$	光速の側だが伝を説明できる。 絶対屈折率及び屈折の法則がわかる。
(3) レンズ・眼と光学機器	4	単レンズによる結像の法則を理解できる。
(3) V V V HR C / C 7 NX HB	4	THE STATE OF THE S
2. 直線上を伝わる波		
(1) 波の基本式	3	波長・周期・波の速さなど波の基本物理量を理解できる。
(2) 正弦波・横波と縦波	3	正弦波の式を理解できる。横波と縦波の違いがわかる。
ļ	<u> </u>	
前期中間試験	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	1	前期中間試験の解説と解答
(3) 波の重ね合わせ・反射波	2	 波の重ね合わせの原理と反射などによる合成波を理解できる。
(4) 定常波	2	放り重ねらりとの原理と反射などによる自成版を理解できる。 定常波がどのように形成されるか理解できる。
(4) Æmix	2	た間域がでいる)での//CAVSW 左介できる。
2. 平面や空間を伝わる波		
(1) 波面とホイヘンスの原理	2	ホイヘンスの原理を理解できる。
(2) 波の干渉・回折	4	水面波などにおける波の干渉条件を説明できる。
(3) 波の反射・屈折	2	ホイヘンスの原理から反射や屈折の法則を説明できる。
前期授業のまとめ	1	前期の授業内容について総合問題を解くことができる。
前期末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	前期末試験の解説と解答、および授業アンケート
3. 音 波		オッナ にっぱ続けがオップエオンハンマ
(1) 音の発生・速さ・音の三要素	2	音の速さの性質及び音の三要素が分かる。
(2) 音波の現象 反射・屈折・回折・干渉・うなり	2	うなりの発生理由及びうなりの式を理解できる
(3) 発音体の固有振動・共鳴	4	弦や気柱の固有振動を理解できる。
(4) ドップラー効果	4	ドップラー効果がどのようにして起こるか説明できる。
(1) 1 7 7 7 777	4	1 7 7 7 7937KW C 12 GK 7 TC C C C C C W WEY T C C C C
4. 光 波		
(1) 光の干渉 1	4	ヤングの実験において光の干渉条件を説明できる。
ヤングの実験・回折格子		回折格子での光の干渉を説明できる。
 後期中間試験	1	上記項目について学習した内容の理解度を確認する。
	1	
(2) 光の干渉 2	3	薄膜による光の干渉を理解できる。
薄膜による干渉・ニュートン環		ニュートンリングの発現理由を理解できる。
(3) 偏光・光の分散・光の散乱	2	偏光・散乱とは何かわかる。また,波長と色の関係がわかる。
(a) MINDO DO-2 DA IN DO-2 DA HO	L	

 5. 原子 (1) 電子 (2) 波動性と粒子性 光電効果・コンプトン効果・物質波 (4) 原子構造 ボーアの原子模型 	2 3 3	電子の電界・磁界中での運動を説明できる。 光子のエネルギーおよび仕事関数が理解できる。 コンプトン効果を説明できる。ド・ブロイ波長が計算できる。 水素原子のボーア模型を理解できる。
学年末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	学年末試験の解説と解答,本授業のまとめ, および授業アンケート

「到達目標」

- 単レンズの結像の法則を用いて、どのような像がどの位置に現れるか説明できる。
- ・ 波の本質は振動の伝搬であること、および波動と数式との関連を理解する。
- 音などの身近な波動現象の原理を理解し、数的処理を行い説明できる。
- ・ 光の波動的性質と現象を理解し、数的処理を行い説明できる。
- ・ 光の二重性を理解し、光子が関連するときの運動量保存則やエネルギー保存則を説明できる。

[評価方法]

各中間の成績は、その中間試験結果をもって成績とする。前期末成績と学年末成績はそれぞれ、中間試験結果 40%、期末試験結果 40%、及び平素の成績 (小テスト、レポート課題、宿題、ノート提出および授業態度など) 20% で評価する。

学年総合評価 = (前期末成績+学年末成績) / 2

なお、**合格点は50点である**。特に、提出物が未提出の場合、単位取得が困難になるので注意すること。

[認証評価関連科目] 物理Ⅰ, 物理Ⅱ, 応用物理ⅡB

[JABEE関連科目]

[学習上の注意]

公式の暗記と数値の代入に終始することなく「公式の意味」を理解しようとすること、および「論理的な思考」を通して問題の解法の鍵を得ることが大切である。「定義」をしっかりと把握すること、問題集を利用した解法・計算訓練が習得のポイントとなろう。

	C 54 2 7 0			
達成しようとしている 基本的な成果	(B)	秋田高専学習・ 教育目標	JABEE基準	

授業科目	必•選	学年	学科(組) 専攻	担当教員	単位数	授業時間	自学自習時間
基礎電気磁気学 Basic Electromagnetism	必修	3年	E	坂本 文人	2	通年週2時間 (合計60時間)	

[教 材]

教科書:「電気磁気学」 安達三郎 大貫繁雄 共著 森北出版 「演習電気磁気学」大貫繁雄 安達三郎 共著 森北出版 演習書:「電磁気学例題演習I,II」山口昌一郎 著 電気学会 「電気磁気学問題演習詳解」山田直平 原著 桂井 誠 編著 電気学会

[授業の目標と概要]

静電界、磁界及び電磁波における物理現象、法則を理解し、それらの様々な物理現象を数式で表し、逆に数式で表 された物理現象がどのようなものか、本質を深く理解できる能力を修得する。

本授業は静電界を中心とした電気磁気学の基礎を学ぶ。自学自習および演習によって、各種問題が解けるようにな ることを目標とする。

[授業の進め方] 講義形式で行う。必要に応じて適宜小テストを実施し、また、演習問題、レポート、宿題を課す 。試験結果が合格点に達しない場合、再試験を行うことがある。

[惄娄内宏]

[授業内容]		
授業項目	時間	内 容
授業ガイダンス 1 電荷	1	授業の進め方と評価の仕方について説明する。
(1) 電荷 (2) クーロンの法則 (3) 静電誘導 (4) 演習問題 2 真空中の静電界	1 2 2 4	電荷の性質について理解できる。 点電荷に働く力を求めることができる。 静電誘導について説明できる。 演習を行う。
(1) 電界と電気力線	4	電界の強さを求めることができる。
前期中間試験 	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答 (2) 電位差と電位 (3) 等電位面と電位の傾き (4) ガウスの法則 (5) 帯電導体の電荷分布と電界 (6) 演習問題	1 2 1 4 2 4	前期中間試験の解説と解答電位、電位差を計算できる。 等電位面,電位の傾き,電気力線を理解できる。 等電位面,電位の傾き,電気力線を理解できる。 jon であることができる 導体上の電荷密度,電界,電位を求めることができる 演習を行う。
前期末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	前期末試験の解説と解答,及び授業アンケート
(7) これまでの復習	2	前期の学習内容について復習する。
3 導体系と静電容量 (1) 導体系 (2) 静電しゃへい (3) 静電容量 (4) コンデンサの接続 (5) 静電界におけるエネルギー と力 (6) 演習問題	1 1 2 2 2 2	導体系の考え方が理解できる。 導体系の考え方より静電遮蔽について理解できる。 平行導体板、同心導体球などの静電容量を求めることができる。 直列、並列の種々の合成容量、コンデンサに蓄えられる エネルギー、帯電導体に働く力を仮想変位の原理を用いて求めることができる。 渡習を行う。
後期中間試験	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答 4 誘電体 (1) 誘電体 (2) 誘電体中のガウスの法則 (3) エネルギーと力	1 2 2 2	後期中間試験の解説と解答 誘電体の性質が理解できる。 ガウスの法則を用いて計算ができる。 誘電体中エネルギー密度,受ける圧力を求めることができる。
(4) 演習問題 5 定常電流 (1) 定常電流	3 2	演習を行う 自由電子の平均速度、合成抵抗、最大電力、導電率などを計算でき
(2) 演習問題	2	る。演習を行う。
 学年末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	学年末試験の解説と解答,本授業のまとめ,及び授業アンケート

[到達目標]

電気磁気学の本質の理解を本当に身についたものにすることが目標である。このため、豊富な演習問題と例題を多く取り入れ、より高度な電気磁気学を学ぶための基礎学力を修得できるようになること。

[評価方法]

合格点は50点である。各中間、期末の成績は、試験結果70%、小テスト・レポートなどを30%で評価する。特にレポートなど提出物の未提出者は単位取得が困難となるので注意すること。

学年総合成績=(前期中間成績+前期末成績+後期中間成績+学年末成績)/4

[認証評価関連科目]

電気基礎, 電気磁気学, 電波工学, (電気磁気学特論), (電磁波工学)

[JABEE関連科目]

[学習上の注意]

電気磁気学は、電気情報工学の中の様々な物理現象を理解するための中心的基礎科目という認識を持つこと。本質を理解し、問題を解けるようになるためには多くの演習問題を解くことが不可欠である。指定された演習書を利用して問題演習に積極的に取り組むこと。なお、指定された図書は図書館で閲覧可能である。

達成しようとしている 基本的な成果 (D	秋田高専学習 ・教育目標	1	JABEE基準	
-------------------------	-----------------	---	---------	--

授業科目	必・選	学 年	学科(組) 専 攻	担当教員	単位数	授業時間	自学自習時間
電子デバイス工学 Electronic Device Engineering	必修	3年	E	田中将樹	2	通年週2時間(合計60時間)	

[教 材]教科書:「電子工学基礎」中澤達夫,藤原勝幸 共著 コロナ社

その他:自製プリントの配布

[授業の目標と概要]

本講義では、半導体工学で必要な電子の物理現象を理解し、半導体を中心とした電子デバイスの基本的な動作 原理および特徴について基礎的な知識を習得することを目標として授業を進めていく。

「授業の進め方]

講義形式で行う。必要に応じて適宜小テストや小実験の実施、レポートの提出を求める。試験結果が合格点に達しない場合、再試験を行うことがある。

「授業内容]

授 業 項 目	時間	内 容
授業ガイダンス	1	授業の進め方と評価の仕方について説明する。
1 真空中の電子		
(1) 電子の運動	5	真空中の電子の運動について理解できる。
(2) 物質内からの電子の放出	3	電子放出について理解できる。
(3) 電子の性質	3	電子質量、電子の波動性について理解できる。
2 原子内の電子		
(1) スペクトル	2	原子スペクトルがわかる。
前期中間試験	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	1	前期中間試験の解説と解答
(2) ボーアの理論	3	エネルギー準位がわかる。
(3) 量子状態	1	電子の量子状態がわかる。
3 固体内の電子		
(1) シュレディンガー方程式	1	固体中の電子の状態がわかる。
(2) フェルミ分布則	2	フェルミ分布則が理解できる。
(3) 自由電子モデル	2	固体中の電子の振る舞いがわかる。
(4) エネルギーバンド	4	バンド理論がわかる。
前期末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	前期末試験の解説と解答、および授業アンケート
4 半導体デバイス		
(1) 半導体材料	7	不純物半導体がわかる。
(2) pnダイオード	7	ダイオードの電圧電流特性がわかる。
後期中間試験	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	1	後期中間試験の解説と解答
(3) ショットキーダイオード	5	金属と半導体の接触がわかる。
(4) トランジスタ	5	トランジスタの静特性がわかる。
(5) FET	3	FETやサイリスタの動作が理解できる。
学年末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	学年末試験の解説と解答、本授業のまとめ、および授業アンケート
「到達日樗」		

[到達目標]

半導体を扱う上で必要な固体中での電子の振る舞いを理解し,実際の電子デバイスの動作との関連を理解できること。また,各種電子デバイスの特徴がわかるようになること。

[評価方法]

合格点は50点である。前期末と学年末(後期)の成績は、それぞれの中間と期末の試験結果を70%、小テスト・レポート等を30%で評価する。特に、レポート等の未提出者は単位取得が困難となるので注意すること。

学年総合評価 = (前期末成績 + 学年末成績) /2

[認証評価関連科目] 半導体工学,物性工学,(エネルギー材料科学),(電子物性),(オプトエレクトロニクス)

[JABEE関連科目]

[学習上の注意]

関連科目の知識が不可欠であるので既に履修済みの科目について知識を確認・整理しておくこと。また、難易度が高い科目と思われるので復習中心の勉強を心がけること。

達成しようとしている 基本的な成果	(D)	秋田高専学習 ・教育目標		JABEE基準	
------------------------	-----	-----------------	--	---------	--

授業科目	必•選	学 年	学 科 専 攻	担当教員	単位数	授業時間	自学自習時間
電気回路 II Electric Circuit II	必修	3年	E	宮田 克正 (非常勤)	2	通年週2時間 (合計60時間)	

[教 材]教科書: 専門基礎ライブラリー「電気回路」金原粲監修,高田進他著 実教出版

[授業の目標と概要]

交流回路解析,三相交流,二端子網について例題と問題を多く解くことにより問題解決のための感覚を養うと共に 電気回路の知識を身につける。

[授業の進め方]

講義形式で行う。随時演習を行いながら授業を進め、必要に応じてレポート提出を要する。試験結果が合格点に達しない場合は、再試験を行うことがある。

「授業内容]

[坟未竹谷]		
授業項目	時間	内容
授業のガイダンス	1	授業の進め方と評価の仕方について説明する。
1. 交流回路の基礎と解析		
(1)2年次の学習内容の復習	3	2年次の学習内容を復習し、理解度を確認する。
(2) 周期変量	8	フーリエ級数が理解できる。
(3) 演習	2	演習を行う。
前期中間試験	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	1	中間試験の解説と解答
2. 回路解析と三相交流		
(1) 線形性と双対性	5	交流における重ね合わせの定理などの諸定理が理解できる。
(2) 三相交流	6	三相交流が理解できる。
(3) 演習	2	演習を行う。
前期末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	前期末試験の解説と解答および授業アンケート
(4)これまでの復習	4	これまでの学習内容について復習を行う。
3. 二端子対回路		ノ、、0 20、 /= 70 1 マー田ラ ロロロケ 20回 /カー・ショ
(1) 二端子対回路とインピーダンス行列	4	インピーダンス行列による二端子対回路が理解できる。
(2) アドミタンス行列	4	アドミタンス行列による二端子対回路が理解できる。
(3) 演習	2	演習を行う。
後期中間試験	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	中間試験の解説と回答
(4) 二端子対回路の相反性と外部接続	4	二端子対回路の解法や考え方が理解できる。
(5)F行列とハイブリッド行列	4	F行列とH行列について理解できる。
(6) 演習	4	演習を行う。
学年末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と回答	2	学年末試験の解説と解答,本授業のまとめ,授業アンケート
試験の解説と回答	2	学年末試験の解説と解答,本授業のまとめ,授業アンケート

[到達目標]

電気工学の中心的な科目の一つであり、その習熟結果は他科目へも大きな影響を与える。従って、例題、問題を多く解き、種々の電気回路の問題を解けるようになること。

[評価方法]

合格点は50点である。前期末と学年末の成績は、それぞれの中間と期末の試験結果を70%、レポート、小テストを30%で評価する。

学年総合評価=(前期末成績+学年末成績)/2

[認証評価関連科目]電気基礎,電気回路 I ,回路網理論,電子回路,電波工学, I C応用回路, I C応用回路演習基礎電気磁気学,電気磁気学,(電気磁気学特論),(電磁波工学)

[JABEE関連科目]

[学習上の注意]

電気回路の考え方を身に付けるために教科書の問題を数多く解くこと。教科書の問題の詳細な解答例は出版社のホームページ(http://www.jikkyo.co.jp)下にある。各自で検索し、ダウンロードして利用すること。

 · 1 //	0 7 017	1	71 7 7 7		- 0
達成しようとしている 基本的な成果	(D)	秋田高専学習 ・教育目標		JABEE基準	

授業科目	必・選	学 年	学科(組) 専 攻	担当教員	単位数	授業時間	自学自習時間
電気情報基礎実験 Basic Experiments in Electric Information	必修	3年	E	山崎 博之 菅原 英子 坂本 文人 中沢 吉博	3	通年週3時間 (合計90時間)	

[教 材] 各テーマ毎に担当教員が用意するプリントを利用して行う。

[授業の目標と概要] 各種実験装置を実際に構成し、操作実技を修得するとともに、ものづくりを通して知識を活用する能力を養う。また、レポート作成を通じて工学的な文章の書き方を修得し、内容・結果に対する考察力を高める。

[授業の進め方] ガイダンスは講義形式で行い,実験は各テーマについて班ごとに行います。テーマごとにレポート提出をし,テーマによってプレゼンテーション技術向上のために発表会を行います。

[授業内容]

以未门在。		·
授業項目	時 間	内容
【前期】		
1. ガイダンス	6	実験ガイダンスおよび安全教育を行う。
2. 電気機器系実験		
(1) 直流発電機実験	6	直流発電機の無負荷および負荷特性がわかる。
(2) 直流電動機実験	6	直流電動機の速度制御および負荷特性がわかる。
3. 情報通信系実験		
(1)H8マイコン基礎実験	1 2	マイコンの基本的な使い方を理解し、入出力回路とプログラムの作
		成方法がわかる。
(2)論理回路製作実習	1 2	論理回路ICによる回路製作ができる。
4. まとめ	3	前期の実験実習のまとめと授業アンケートを行う。
【後期】		
5. ガイダンス	6	実験ガイダンスおよび安全教育を行う。
6. 電気機器系実験		
(1) 変圧器及び電力測定実験	6	変圧器の等価回路および交流回路の電力がわかる。
(2) シーケンス制御実験	6	PLCによるシーケンス制御法を理解できる。
7. 情報通信系実験		
(1)H8マイコン応用実験	1 2	マイコンを応用して簡単な装置の設計製作ができる。
(2) ネットワーク実験	1 2	ネットワークを用いたデータ通信が理解できる。
8. まとめ	3	最後に実験実習のまとめと授業アンケートを行う。

[到達目標] 正しい実験データや回路の動作が得られるように、実験内容をきちんと把握し、実験回路の構成、機器の操作、プログラミングなどの操作が理解できること。レポートは実験内容、考察等を的確にまとめ、期限までに提出できること。

[評価方法] 合格点は50点である。前期成績と後期成績の平均を学年総合評価とする。前期成績および後期成績は各テーマのレポート及び実験に対する姿勢で評価する(レポートの体裁(図・表・式の出来映えを含む)50%、考察40%、実験に対する姿勢10%)。レポート未提出者は単位取得が困難となるので注意すること。

学年総合評価=(前期成績+後期成績)/2

[認証評価関連科目] 電気製図, ものづくり工作実習, 基礎工学実験, 電気情報工学実験Ⅰ, 電気情報工学実験Ⅱ, (生産システム工学特別実験), (創造工学演習), (特別研究)

[JABEE関連科目]

[学習上の注意]

2年生の実験実習と比べて難易度が上がっているので、意欲的に取り組むこと。実験中のデータ整理、グラフ作成を班で協力して効率よく行うこと。

電気機器系実験は取り扱う電力が大きいため、結線時にミスがあると大変危険である。また、回転機も使用するために不注意があれば大きな事故につながりかねない。工場実習と同様に作業着を正しく着用し、安全管理に十分気をつけること。

達成しようとしている	(E)	秋田高専学習	IABEE基進	
基本的な成果	(上)	・教育目標	JABEE基準	

授業科目	必・選	学 年	学科(組) 専 攻	担当教員	単位数	授業時間	自学自習時間
電気機器学 Elecrtomachinery	必修	3年	Е	山崎博之	2	通年週2時間(合計60時間)	

[教 材] 教科書:「エレクトリックマシーン&パワーエレクトロニクス 第2版」 エレクトリックマシーン&パ

ワーエレクトロニクス編纂委員会 編 森北出版

その他: 自製プリントの配布

[授業の目標と概要]

電磁現象の具体的応用である電気機器の本質を理解する。まず電磁力と電磁誘導、磁気回路と電気回路が融合した電気機器の構成を学。次に変圧器と直流機について基礎理論、特性、構造及び実際の運用を学ぶ。

「授業の進め方」

講義形式で行う。必要に応じて適宜小テストを実施し、また演習課題、レポート、宿題を課す。 試験結果が合格点に達しない場合、再試験を行うことがある。

「授業内容」

授 業 項 目	時間	内 容
授業ガイダンス	1	授業の進め方と評価の仕方について説明する。
1. 電気機器の基礎		
(1) 電気機器の分類と構成要素	1	電気機器の分類および機器を構成する材料の特徴を理解できる。
(2) 電磁力と電磁誘導	2	電流による磁気作用と電磁力及び電磁誘導現象が理解できる。
(3) 機械系の方程式と機器の特性	4	電気機器の特性を理解する上で必要な機械系の方程式と機器の特性
2. 変圧器		について理解できる。
(1) 理想変圧器の動作	4	変圧器の基礎理論がわかる。
(2) 変圧器の構造	2	実際の変圧器の構造と冷却方式が理解できる。
前期中間試験	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	前期中間試験の解説と解答
(3) 実際の変圧器とその等価回路	2	T形等価回路と簡易等価回路について理解できる。
(4) 変圧器の特性	4	各種試験法により等価回路定数の算定、及び特性算定が出来る。
(5) 変圧器の結線と並行運転	4	各種三相結線法や並列運転の条件が理解できる。
(6) 特殊変圧器	2	特殊変圧器の内容と用途が分かる。
前期末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	前期末試験の解説と解答、および授業アンケート
3. 直流機		
(1) 直流機の原理	4	直流機の基本的動作原理及び構造が理解できる。
(2) 直流機の理論と電機子反作用	4	誘導起電力やトルク、電機子反作用とその対処法について理解でき
		る。
(3) 直流電動機の種類と特性	6	各種直流電動機のトルク及び出力の関係式が分かる。
後期中間試験	1	上記項目について学習した内容の理解度を確認する。
試験の解説と解答	2	後期中間試験の解説と解答
(5) 速度制御特性	4	直流電動機の速度制御法がわかる。
(6) 直流発電機の種類と特性	4	各励磁方式の特性の違いが理解できる。
(7) 直流機の運転	4	始動・運転・停止等の及び並行運転の方法等を理解できる。
学年末試験	あり	上記項目について学習した内容の理解度を確認する。
試験の解説と解答、本授業のまとめ	2	学年末試験の解説と解答、本授業のまとめ、および授業アンケート

[到達目標] 電気磁気学と電気機器とのつながりを理解し、変圧器および直流機の基礎理論、構造、特性、運用を 拾得するとともに、主要な式を用いて特性の計算が出来ること。

[評価方法] 合格点は50点である。各中間、期末の成績は、試験成績70%、小テスト、レポートや宿題等を30%で評価する。学年総合成績=(前期中間成績+前期末成績+後期中間成績+後期末成績)/4

[認証評価関連科目] 電気機械変換工学

[JABEE関連科目]

[学習上の注意]

電気情報基礎実験との結びつきを活かす。機器の動作原理を確実に修得するとともに、等価回路を用いて特性算定ができるようテキストの小末問題は必ず解いてみること。

達成しようとしている	(D)	秋田高専学習	IABEE基進	
基本的な成果	(D)	・教育目標	JADEE基毕	

授業科目	必・選	学年	学科(組) 専 攻	担当教員	単位数	授業時間	自学自習時間
コンピュータ基礎 Basic Computer Engineering	必修	3年	E	菅原 英子	2	通年週2時間(合計60時間)	

[教 材]教科書(前期):「基礎からわかる論理回路」 松下俊介 著(森北出版)

教科書(後期): 「H8アセンブラ入門」 浅川 毅, 堀桂太郎 共著(東京電機大学出版局)

補助教科書(後期):「H8マイコン入門」 堀桂太郎 著(東京電機大学出版局)

その他:自製プリントの配布

[授業の目標と概要]前期は論理回路の続きとして順序回路設計手法の習得を目標とする. 後期はH8アセンブラ言語の習得を通じて、コンピュータアーキテクチャ(特にH8/300H CPU内部構造)を理解し、マイコンを使った簡単な入出力制御ができるようになることを目標とする.

[授業の進め方] 講義形式で行う. 後期の後半はH8マイコンを用いたプログラミング演習を行う. 必要に応じて小テスト・レポート等を課す. 試験結果が合格点に達しない場合, 再試験を行うことがある.

[授業内容]

53536. 413		
授 業 項 目	時間	内容
授業ガイダンス	1	授業の進め方と評価の仕方について説明する.
1. 記憶回路		
(1)基本ラッチ回路	3	順序回路の概念とラッチの構成および動作について理解でき
(0) - 2 11 - 0 - 0		3.
(2) フリップフロップ	10	フリップフロップの構成および動作について理解できる.
前期中間試験	1	上記項目について学習した内容の理解度を確認する.
試験の解説と解答	2	前期中間試験の解説と解答
2. カウンタ	6	カウンタの構成方法および動作について理解し、構成できる.
3. レジスタ	6	レジスタの構成方法および動作について理解し、構成できる.
前期末試験	あり	上記項目について学習した内容の理解度を確認する.
試験の解説と解答	2	前期末試験の解説と解答、および授業アンケート
4. マイコン基礎	2	一般的なマイコンの構成・動作・処理性能について説明できる.
5. マイコンとH8/300Hシリーズ	2	H8/300Hシリーズの内部構成要素について理解できる.
6. アセンブラ言語の基礎		
(1)2進数と演算	2	2進数の加減算,10進数・16進数への変換ができる.
(2)命令の形式及び機械語命令	2	アセンブラ言語の書式及びアドレッシングについて理解でき
		3.
7. アセンブラ言語の命令	6	各種命令について理解できる.
後期中間試験	1	上記項目について学習した内容の理解度を確認する.
試験の解説と解答	2	後期中間試験の解説と解答
8. プログラム演習	12	アセンブラによるプログラミングができる.
学年末試験	なし	
まとめ	2	本授業のまとめ、および授業アンケート

[到達目標] 論理回路, マイコンなどのディジタル回路, コンピュータアーキテクチャについて理解し, 簡単な回路設計・製作とアセンブラ言語によるプログラミングができること.

[評価方法] 合格点は50点である. 前期中間, 前期末, 後期中間の各成績は試験結果を70%, レポート・小テスト等を30%で評価する. 学年末成績はプログラム演習課題の結果とそれをまとめたレポートで評価する. 特に, レポート未提出者は単位取得が困難となるので注意すること.

学年総合評価= ((前期中間成績+前期末成績+後期中間成績+学年末成績)/4)

[認証評価関連科目] 情報処理基礎,論理回路,IC応用回路演習

「IABEE関連科目]

[学習上の注意] 自分で回路の組立て、プログラミングの作成ができるまで予習復習を行うこと.分からない点は遠慮なく質問に来ること.クラスの中で互いに教え合う雰囲気が生まれることを期待する.

達成しようとしている 基本的な成果 (D)	秋田高専学習 ・教育目標		JABEE基準	
--------------------------	-----------------	--	---------	--