技術・研究シーズ紹介 機械系 知能機械コース

研 究 タイトル	Kin	ectを用いた上版	ctを用いた上肢リハビリ支援システムの開発		
氏 名	木澤 KIZA	木澤 悟 KIZAWA Satoru		kizawa@akita-nct.ac.jp	
職名	教授		学 位	博士 (工学)	
所属学会・協会 日本機械学会,日本福祉工学会,日本臨床バイオメカニクス学会					
キーワ	ード	バイオメカニクス,	ロボット	, ニューラルネットワーク, FES	
技 術 相提供可能	相 談 技術	・リハビリテーショ ・制御機器の応用 ・MATLAB/Simulir			

研究内容

Kinectはマーカレスで人間の身体の関節情報を推定する機能を持っているが、逆にマーカーを取り付けた任意の位置情報を取得することは難しい。そこで、モーションキャプチャーとしての機能を構築するために、任意の位置に貼り付けたマーカーの位置情報を取得するための機能を開発した。さらに、開発したKinectシステムを上肢リハビリ装置に組み込み、システムを駆動制御するセンサーの役割とともに各関節の運動情報を取得することを検討した。

〇実験装置

図1に開発した制御システムの基本構成を示す。主に駆動制御、力覚センサー、Kinectから構成される。また、携帯性を考慮してノートPCを基本に全てのデバイスがUSBで接続されている。

図2はKinectを上肢支援リハビリ装置に組込んだシステムである。マーカーは手首、肘、肩および装置の位置情報取得のために装置本体に設置した。

図1 制御システム

図2 上肢支援リハビリシステム

〇研究成果

- ・Kinect V2を応用して任意に指定したマーカの3次元位置情報の取得に成功した。
- ・マーカを上肢の各関節に貼付することで、モーションキャプチャーとしての機能が得られた。
- ・Kinectはモーションセンサー機能と同時に制御装置の位置制御にも利用可能である。
- ・VICONによる精度の比較実験から最大誤差は5mm程度に抑えられ、安価なモーションセンサーとしての応用が期待できる。

提供可能な設備・機器

回転型2リンク倒立振子実験装置(リアルテック)