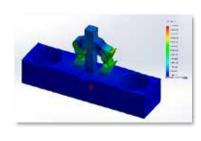
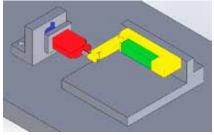
技術・研究シーズ紹介 機械系 機械システムコース

研 究 タイトル 振重		加制御システムの開発			
氏 名	櫻田 SAKU	陽 JRADA Akira	E-mail		
職名	准教授		学 位	博士 (工学)	
所属学会・協会 日本機械学会,精密工学会,日本AEM学会					
キーワ	ード	位置決め,振動制御, 月	王電素子,	粘弾性体, ロボット (リハビリテーショ	ン)システム制御
技 術 相 談 提供可能技術		・精密位置決め機構(高速・高精度)に関するテーマ ・振動抑制や平面減衰機構に関するテーマ ・ロボット(リハビリテーション)の制御システムに関するテーマ			

研究内容

精密位置決め機構


振動制御+平面減衰機構


ロボット制御システム

これまで、光ファイバー式非接触変位計、レーザースケール、フォースセンサーを使用し、駆動源に圧電セラミクス、積層型圧電素子、位置と力をフィードバックする機構やシステムの研究を行ってきました。それらの研究に伴い、高速に振動する構造体の振動抑制およびダンパーや動作を制御するコントローラの応用展開を目指し、画像による侵入者検知や2次元センサを用いた障害物検出、関節角度等のセンサから姿勢推定およびリハビリテーションロボットの制御システムなど、異業種交流を積極的に進めたいと考えております。

提供可能な設備・機器